SMoP: Towards Efficient and Effective Prompt Tuning with Sparse Mixture-of-Prompts

Joon Young Choi, Junho Kim, Jun Hyung Park, Wing Lam Mok, Sang Keun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Prompt tuning has emerged as a successful parameter-efficient alternative to the full fine-tuning of language models. However, prior works on prompt tuning often utilize long soft prompts of up to 100 tokens to improve performance, overlooking the inefficiency associated with extended inputs. In this paper, we propose a novel prompt tuning method SMoP (Sparse Mixture-of-Prompts) that utilizes short soft prompts for efficient training and inference while maintaining performance gains typically induced from longer soft prompts. To achieve this, SMoP employs a gating mechanism to train multiple short soft prompts specialized in handling different subsets of the data, providing an alternative to relying on a single long soft prompt to cover the entire data. Experimental results demonstrate that SMoP outperforms baseline methods while reducing training and inference costs. We release our code at https://github.com/jyjohnchoi/SMoP.

Original languageEnglish
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages14306-14316
Number of pages11
ISBN (Electronic)9798891760608
Publication statusPublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: 2023 Dec 62023 Dec 10

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period23/12/623/12/10

Bibliographical note

Publisher Copyright:
©2023 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'SMoP: Towards Efficient and Effective Prompt Tuning with Sparse Mixture-of-Prompts'. Together they form a unique fingerprint.

Cite this