Abstract
We produced hierarchically branched Fe2O3 nanorods on a Sb:SnO2 transparent conducting oxide (TCO) nanobelt structure as photoanodes for photoelectrochemical water splitting. Single-crystalline SnO2 nanobelts (NBs) surrounded by Fe2O3 nanorods (NRs) were synthesized by thermal evaporation, then underwent chemical bath deposition and annealing. When Fe2O3 was crystallized by annealing, Sn was diffused from SnO2 NBs and incorporated to Fe2O3 NRs, which was confirmed through Energy dispersive spectroscopy. Unlike previous high temperature sintering (∼800 °C), Sn doped hematite NRs were obtained at a low temperature (∼650 °C). This occurred since SnO2 NBs directly connected to Fe2O3 NRs are an abundant source of Sn dopant. The 3D hematite NRs on SnO2 NBs annealed at 650 °C produce a photocurrent density of 0.88 mA/cm2 at 1.23 V vs. RHE, which is 3 times higher than that of hematite NRs on a fluorine doped tin oxide (FTO) glass substrate annealed at the same temperature. The enhanced photocurrent is attributed to the improved electrical conductivity of Fe2O3 NRs by Sn doping, the efficient electron transport pathway by TCO nanowire and the increased surface area by hierarchically branched structure.
Original language | English |
---|---|
Pages (from-to) | 16459-16467 |
Number of pages | 9 |
Journal | International Journal of Hydrogen Energy |
Volume | 39 |
Issue number | 29 |
DOIs | |
Publication status | Published - 2014 Oct 2 |
Bibliographical note
Publisher Copyright:© 2014 Hydrogen Energy Publications, LLC.
Keywords
- 3D structure
- Doping
- Hematite
- Photoelectrochemical
- Transparent conducting oxide
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology