Solid-State Homojunction Electrochemical Transistors and Logic Gates on Plastic

In Cheol Kwak, Yoonjoo Lee, Min Je Kim, Young Jin Choi, Dong Gue Roe, Moon Sung Kang, Han Young Woo, Jeong Ho Cho

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Organic electrochemical transistors (OECTs) have attracted significant attention due to their unique ionic–electronic charge coupling, which holds promise for use in a variety of bioelectronics. However, the typical electronic components of OECTs, such as the rigid metal electrodes and aqueous electrolytes, have limited their application in solid-state bioelectronics that requires design flexibility and a variety of form factors. Here, the fabrication of a solid-state homojunction OECT consisting of a pristine polymer semiconductor channel, doped polymer semiconductor electrodes, and a solid electrolyte is demonstrated. This structure combines the photo-crosslinking of all of the electronic OECT components with the selective doping of the polymer semiconductor. Three Lewis acids (gold (III) chloride (AuCl3), iron (III) chloride (FeCl3), and copper (II) chloride (CuCl2)) are utilized as dopants for the metallization of the polymer semiconductor. The AuCl3-doped polymer semiconductor with an electrical conductivity of ≈100 S cm−1 is successfully employed as the source, drain, and gate electrodes for the OECT, which exhibited a high carrier mobility of 3.4 cm2 V−1 s−1 and excellent mechanical stability, with negligible degradation in device performance after 5000 cycles of folding at a radius of 0.1 mm. Homojunction OECTs are then successfully assembled to produce NOT, NAND, and NOR logic gates.

Original languageEnglish
Article number2211740
JournalAdvanced Functional Materials
Volume33
Issue number13
DOIs
Publication statusPublished - 2023 Mar 23

Bibliographical note

Funding Information:
I.C.K. and Y.L. contributed equally to this work. This work was supported by the National R&D Program through the National Research Foundation (NRF) funded by Ministry of Science and ICT (2021M3D1A2049315) and the Basic Science Program (2019R1A6A1A11044070) through the NRF of Korea funded by the Ministry of Science and ICT, Korea.

Publisher Copyright:
© 2023 Wiley-VCH GmbH.

Keywords

  • dopants
  • electrochemical transistors
  • photo-crosslinking
  • polyelectrolytes
  • polymer semiconductors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Chemistry(all)
  • Materials Science(all)
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'Solid-State Homojunction Electrochemical Transistors and Logic Gates on Plastic'. Together they form a unique fingerprint.

Cite this