Abstract
Influence of the cosolvent on the sorption of organic acids on biochar has not been well understood. For this purpose, the sorption (log Km, L kg−1) of three aromatic acids (benzoic acid (BA, pKa = 4.20), 1-naphthoic acid (1-NAPA, pKa = 3.70), and 9-anthroic acid (9-ANTA, pKa = 3.65) was evaluated as a function of methanol volume fraction (fc = 0.0, 0.25, and 0.5), liquid pH (2.5 and 7.0), ionic composition (CaCl2 and KCl) and ionic strength (0.005 M, 0.5 M, and 1 M CaCl2). A giant Miscanthus-derived biochar (ZPC of 2.86) was used as the sorbent. For all solutes, the sorption coefficients (log Km) measured at pH 2.5 (i.e., pH < pKa) tended to decrease with increasing fc, as expected from the cosolvency model, while the result obtained at pH 7.0 was not fully explained by the same model. The log Km of 1-NAPA in the CaCl2 system was always greater than in the KCl system (p < 0.05) and the impact became pronounced at high pH (>pKa) with increasing fc. Increasing the Ca2+ concentration at fc = 0.0 (from 0.005 M to 1 M) enhanced the value by 0.32 log unit of Km. These phenomena indicate a significant role of dissolved Ca2+ in the liquid phase, most likely due to the formation of cation bridges between aromatic carboxylates and the biochar surface (i.e., [R-COO--Ca2+]-{Biochar−}). A decrease in the dielectric constant of the methanol mixture could fortify the formation of this bridge. Regardless of the degree of cosolvency power (σ), as the number of aromatic rings of solutes increases, Km decreases in the order BA > 1-NAPA > 9-ANTA, where fc = 0.0. In conclusion, the sorption potential of biochar can be significantly weakened by increasing pH and fc, and in the absence of a divalent cation.
Original language | English |
---|---|
Article number | 140898 |
Journal | Chemosphere |
Volume | 349 |
DOIs | |
Publication status | Published - 2024 Feb |
Bibliographical note
Publisher Copyright:© 2023 Elsevier Ltd
Keywords
- Aromatic carboxylic acid
- Biochar
- Cosolvency
- Methanol
- Sorption
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- General Chemistry
- Pollution
- Public Health, Environmental and Occupational Health
- Health, Toxicology and Mutagenesis