Abstract
Currently, progressively larger deep neural networks are trained on ever growing data corpora. In result, distributed training schemes are becoming increasingly relevant. A major issue in distributed training is the limited communication bandwidth between contributing nodes or prohibitive communication cost in general. To mitigate this problem we propose Sparse Binary Compression (SBC), a compression framework that allows for a drastic reduction of communication cost for distributed training. SBC combines existing techniques of communication delay and gradient sparsification with a novel binarization method and optimal weight update encoding to push compression gains to new limits. By doing so, our method also allows us to smoothly trade-off gradient sparsity and temporal sparsity to adapt to the requirements of the learning task. Our experiments show, that SBC can reduce the upstream communication on a variety of convolutional and recurrent neural network architectures by more than four orders of magnitude without significantly harming the convergence speed in terms of forward-backward passes. For instance, we can train ResNet50 on ImageNet in the same number of iterations to the baseline accuracy, using ×3531 less bits or train it to a 1% lower accuracy using ×37208 less bits. In the latter case, the total upstream communication required is cut from 125 terabytes to 3.35 gigabytes for every participating client.
Original language | English |
---|---|
Title of host publication | 2019 International Joint Conference on Neural Networks, IJCNN 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728119854 |
DOIs | |
Publication status | Published - 2019 Jul |
Event | 2019 International Joint Conference on Neural Networks, IJCNN 2019 - Budapest, Hungary Duration: 2019 Jul 14 → 2019 Jul 19 |
Publication series
Name | Proceedings of the International Joint Conference on Neural Networks |
---|---|
Volume | 2019-July |
Conference
Conference | 2019 International Joint Conference on Neural Networks, IJCNN 2019 |
---|---|
Country/Territory | Hungary |
City | Budapest |
Period | 19/7/14 → 19/7/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- communication
- deep learning
- distributed optimization
- efficiency
ASJC Scopus subject areas
- Software
- Artificial Intelligence