Abstract
In the quest for efficient neural network models for neural data interpretation and user intent classification in brain-computer interfaces (BCIs), learning meaningful sparse representations of the underlying neural subspaces is crucial. The present study introduces a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks, inspired by the natural partitioning of associated neural subspaces observed in the human brain. Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections and reinforce those that show high importance in both tasks. Through our approach, we seek to elucidate the distinct and common neural ensembles associated with each task, employing principled sparsification techniques to eliminate redundant connections and boost the fidelity of neural signal decoding. Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data, suggesting a viable path forward for computationally efficient and robust BCI systems.
Original language | English |
---|---|
Title of host publication | 12th International Winter Conference on Brain-Computer Interface, BCI 2024 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350309430 |
DOIs | |
Publication status | Published - 2024 |
Event | 12th International Winter Conference on Brain-Computer Interface, BCI 2024 - Gangwon, Korea, Republic of Duration: 2024 Feb 26 → 2024 Feb 28 |
Publication series
Name | International Winter Conference on Brain-Computer Interface, BCI |
---|---|
ISSN (Print) | 2572-7672 |
Conference
Conference | 12th International Winter Conference on Brain-Computer Interface, BCI 2024 |
---|---|
Country/Territory | Korea, Republic of |
City | Gangwon |
Period | 24/2/26 → 24/2/28 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- brain-computer interface
- network pruning
- sparse multitask learning
ASJC Scopus subject areas
- Artificial Intelligence
- Human-Computer Interaction
- Signal Processing