Spectral subtraction using spectral harmonics for robust speech recognition in car environments

Jounghoon Beh, Hanseok Ko

    Research output: Chapter in Book/Report/Conference proceedingChapter

    6 Citations (Scopus)

    Abstract

    This paper addresses a novel noise-compensation scheme to solve the mismatch problem between training and testing condition for the automatic speech recognition (ASR) system, specifically in car environment. The conventional spectral subtraction schemes rely on the signal-to-noise ratio (SNR) such that attenuation is imposed on that part of the spectrum that appears to have low SNR, and accentuation is made on that part of high SNR. However, since these schemes are based on the postulation that the power spectrum of noise is in general at the lower level in magnitude than that of speech. Therefore, while such postulation is adequate for high SNR environment, it is grossly inadequate for low SNR scenarios such as that of car environment. This paper proposes an efficient spectral subtraction scheme focused specifically to low SNR noisy environment by representing harmonics distinctively in speech spectrum. Representative experiments confirm the superior performance of the proposed method over conventional methods. The experiments are conducted using car noise-corrupted utterances of Aurora2 corpus.

    Original languageEnglish
    Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    EditorsPeter M. A. Sloot, David Abramson, Alexander V. Bogdanov, Yuriy E. Gorbachev, Jack J. Dongarra, Albert Y. Zomaya
    PublisherSpringer Verlag
    Pages1109-1116
    Number of pages8
    ISBN (Print)3540401970, 9783540401971
    DOIs
    Publication statusPublished - 2003

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume2660
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Spectral subtraction using spectral harmonics for robust speech recognition in car environments'. Together they form a unique fingerprint.

    Cite this