Spectro-Spatio-Temporal EEG Representation Learning for Imagined Speech Recognition

Wonjun Ko, Eunjin Jeon, Heung Il Suk

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In brain–computer interfaces, imagined speech is one of the most promising paradigms due to its intuitiveness and direct communication. However, it is challenging to decode an imagined speech EEG, because of its complicated underlying cognitive processes, resulting in complex spectro-spatio-temporal patterns. In this work, we propose a novel convolutional neural network structure for representing such complex patterns and identifying an intended imagined speech. The proposed network exploits two feature extraction flows for learning richer class-discriminative information. Specifically, our proposed network is composed of a spatial filtering path and a temporal structure learning path running in parallel, then integrates their output features for decision-making. We demonstrated the validity of our proposed method on a publicly available dataset by achieving state-of-the-art performance. Furthermore, we analyzed our network to show that our method learns neurophysiologically plausible patterns.

Original languageEnglish
Title of host publicationPattern Recognition - 6th Asian Conference, ACPR 2021, Revised Selected Papers
EditorsChristian Wallraven, Qingshan Liu, Hajime Nagahara
PublisherSpringer Science and Business Media Deutschland GmbH
Pages335-346
Number of pages12
ISBN (Print)9783031024436
DOIs
Publication statusPublished - 2022
Event6th Asian Conference on Pattern Recognition, ACPR 2021 - Virtual, Online
Duration: 2021 Nov 92021 Nov 12

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13189 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th Asian Conference on Pattern Recognition, ACPR 2021
CityVirtual, Online
Period21/11/921/11/12

Bibliographical note

Funding Information:
This work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government under Grant 2017-0-00451 (Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning) and Grant 2019-0-00079 (Department of Artificial Intelligence, Korea University).

Publisher Copyright:
© 2022, Springer Nature Switzerland AG.

Keywords

  • Brain–computer interface
  • Convolutional neural network
  • Electroencephalogram
  • Imagined speech

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Spectro-Spatio-Temporal EEG Representation Learning for Imagined Speech Recognition'. Together they form a unique fingerprint.

Cite this