Abstract
We investigate anomalous localized resonance on the circular coated structure and cloaking due to it in the context of elastostatic systems. The structure consists of the circular core with constant Lamé parameters and the circular shell with negative Lamé parameters proportional to those of the core. We show that there is a nonzero number k0 determined by Lamé parameters such that two nonempty eigenvalue sequences of the Neumann{Poincaré operator associated with the structure converge to k0 and -k0, respectively, and derive precise asymptotics of the convergence. We then show by qualitative estimates based on asymptotics of eigenvalues that cloaking by anomalous localized resonance takes place if and only if the dipole-type source lies inside critical radii determined by radii of the core and the shell. The critical radii corresponding to k0 and -k0 are different.
Original language | English |
---|---|
Pages (from-to) | 4232-4250 |
Number of pages | 19 |
Journal | SIAM Journal on Mathematical Analysis |
Volume | 49 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Bibliographical note
Funding Information:∗Received by the editors January 30, 2017; accepted for publication (in revised form) June 13, 2017; published electronically October 30, 2017. http://www.siam.org/journals/sima/49-5/M111408.html Funding: The work of the authors was supported by the A3 Foresight Program among China (NSFC), Japan (JSPS), and Korea (NRF 2014K2A2A6000567). The work of the second author was supported by NRF 2016R1A2B4011304. †Department of Electrical and Electronic Engineering and Computer Science, Ehime University, Ehime 790-8577, Japan ([email protected]). ‡Department of Mathematics, Inha University, Incheon 22212, S. Korea ([email protected]). §Department of Mathematical Sciences, Seoul National University, Seoul 08826, S. Korea ([email protected]). ¶Seminar for Applied Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland (sanghyeon.yu@ sam.math.ethz.ch).
Publisher Copyright:
© 2017 Society for Industrial and Applied Mathematics.
Keywords
- Annulus
- Cloaking by anomalous localized resonance
- Lamé system
- Linear elasticity
- Neumann-Poincaré operator
- Resonance
- Spectrum
ASJC Scopus subject areas
- Analysis
- Computational Mathematics
- Applied Mathematics