Stability of Isothermal Spinning of Viscoelastic Fluids

Hyun Wook Jung, Jae Chun Hyun

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)


The stability of isothermal spinning of viscoelastic fluids which have strain-rate dependent relaxation time has been investigated using the linear stability analysis method. The instability known as draw resonance of the system was found to be dependent upon the material functions of the fluids like fluid relaxation time and the strain-rate dependency of the relaxation time as well as upon the draw-down ratio of the process. Utilizing the fundamental physics of the system characterized by the traveling kinematic waves, we also have developed a simple, approximate method for determining this draw resonance instability; it requires only the steady state velocity solutions of the system, in contrast to the exact stability analysis method which requires solving the transient equations. The stability curves produced by this simple, fast method agree well with those by the exact stability method, proving the utility of the method. The stability of other extensional deformation processes such as film casting and film blowing can also be analyzed using the method developed in this study.

Original languageEnglish
Pages (from-to)325-330
Number of pages6
JournalKorean Journal of Chemical Engineering
Issue number3
Publication statusPublished - 1999 May

Bibliographical note

Funding Information:
The support by the Korea Science and Engineering Foundation for this study under the grant of 96-0502-07-01-3 is duly appreciated.


  • Draw Resonance
  • Linear Stability Analysis
  • Maxwell Fluids
  • Strain-Rate Dependent Relaxation Time
  • Throughput Waves
  • Traveling Velocity

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering


Dive into the research topics of 'Stability of Isothermal Spinning of Viscoelastic Fluids'. Together they form a unique fingerprint.

Cite this