Static Random Access Memory Characteristics of Single-Gated Feedback Field-Effect Transistors

Jinsun Cho, Doohyeok Lim, Sola Woo, Kyungah Cho, Sangsig Kim

    Research output: Contribution to journalArticlepeer-review

    33 Citations (Scopus)

    Abstract

    In this paper, we propose a novel static random access memory (SRAM) unit cell design and its array structure consisting of single-gated feedback field-effect transistors (FBFETs). To verify the SRAM characteristics, the basic memory operations and write disturbances of the unit cell are investigated through the mixed-mode technology computer-aided design simulations. The unit cell exhibits the superior SRAM characteristics including a write speed of 0.6 ns, a fast read-out speed of 0.1 ns, and a retention time of 3600 s. Furthermore, the unit cell design exhibits advantages in density, with a small cell area of 8F2, and in the power consumption; the standby power consumption is 0.24 nW/bit for holding '1' and negligible for holding '0.' Moreover, our SRAM array shows reliable 3 × 3 array operations without any disturbances. This paper demonstrates the promising potential of the FBFET SRAM for high-performance, high-density, and low-power memory applications.

    Original languageEnglish
    Article number8556508
    Pages (from-to)413-419
    Number of pages7
    JournalIEEE Transactions on Electron Devices
    Volume66
    Issue number1
    DOIs
    Publication statusPublished - 2019 Jan

    Bibliographical note

    Funding Information:
    Manuscript received September 6, 2018; revised October 24, 2018 and November 9, 2018; accepted November 9, 2018. Date of publication December 3, 2018; date of current version December 24, 2018. This work was supported in part by the National Research Foundation of Korea Grant funded by the Korean Government (MSIP) under Grant NRF-2016R1E1A1A02920171, in part by the Ministry of Trade, Industry and Energy, South Korea, through the Industrial Strategic Technology Development Program (development of fabrication and device structure of feedback Si channel 1T-SRAM for artificial intelligence) under Grant 10067791, and in part by the Brain Korea 21 Plus Project in 2018. The review of this paper was arranged by Editor P.-Y. Du. (Corresponding author: Sangsig Kim.) J. Cho is with the Department of Semiconductor Systems Engineering, Korea University, Seoul 02841, South Korea.

    Publisher Copyright:
    © 1963-2012 IEEE.

    Keywords

    • Feedback field-effect transistors (FBFETs)
    • positive feedback loop
    • static random access memory (SRAM)
    • transient simulation

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Static Random Access Memory Characteristics of Single-Gated Feedback Field-Effect Transistors'. Together they form a unique fingerprint.

    Cite this