Abstract
Our density functional theory calculations show that tiny-gap semiconductor SiGe monolayer is a quantum valley Hall insulator with a spontaneous electric polarization and, under a small biaxial strain, undergoes a topological phase transition between the states with opposite valley Chern numbers. The topological phase transition entails abrupt inversion of the in-plane electric polarization corresponding to inversion of the sublattice pseudospin polarization, while the out-of-plane electric polarization shows a linear response to the biaxial strain as well as to the perpendicular electric field regardless of the phase transition. Thus, the quantum valley Hall state entails in-plane ferroelectricity corresponding to a sublattice pseudospin ferromagnetism.
Original language | English |
---|---|
Article number | 11300 |
Journal | Scientific reports |
Volume | 10 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2020 Dec 1 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (Project No. 2019R1A2C1002076 and BK21PLUS-Initiative for Creative and independent Scientists).
Publisher Copyright:
© 2020, The Author(s).
ASJC Scopus subject areas
- General