Abstract
A strong perpendicular magnetic anisotropy (PMA) is formed in an MgO/CoFeB/Pd unit structure for an MgO-based magnetic tunnel junction. The most important factors for a strong PMA are the composition and the thickness of the CoFeB layer. A strong PMA is observed for the samples fabricated using the CoFeB target with a high Co/Fe ratio and annealed at 300 °C for 1 or 2 h. The PMA is formed up to a CoFeB layer thickness as thick as 2.5 nm, although the strongest PMA, with an out-of-plane coercivity of 1068 Oe and a PMA energy density of 2.7× 106 erg/cc, is seen at a CoFeB thickness of 2.0 nm. The systematic study indicates that the PMA is attributed not to the interface effects but rather to the bulk effect of forming a Pd-rich, Co-Pd alloy, as confirmed by x-ray photoelectron spectroscopy depth profile and x-ray diffraction experiments. The thick CoFeB layer is expected to reduce the template effect from the Pd layer during the annealing, and therefore increase the tunneling magnetoresistance of the MgO-based magnetic tunnel junction.
Original language | English |
---|---|
Article number | 113902 |
Journal | Journal of Applied Physics |
Volume | 108 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2010 Dec 1 |
ASJC Scopus subject areas
- Physics and Astronomy(all)