Structural changes and dynamic rheological properties of sarcoplasmic proteins subjected to pH-shift method

Panchaporn Tadpitchayangkoon, Jae W. Park, Steven G. Mayer, Jirawat Yongsawatdigul

    Research output: Contribution to journalArticlepeer-review

    58 Citations (Scopus)

    Abstract

    Structural changes and dynamic rheological properties of sarcoplasmic proteins from striped catfish (Pangasius hypophthalmus) treated by various pH-shift processes were investigated. Isoelectric precipitation of acid-extracted sarcoplasmic proteins led to the lowest solubility in water. Sarcoplasmic proteins were unfolded after extremely acidic and alkaline extraction, exposing tryptophan and aliphatic residues. The α-helical structure was converted to β-sheet following acidic extraction, whereas alkaline treatment did not disturb the α-helical structure of sarcoplasmic proteins. Disulfide formation, hydrogen bonding via tyrosine residues, and hydrophobic interactions occurred under extreme pH extraction. Acidic extraction induced denaturation and aggregation of sarcoplasmic proteins to a greater extent than did alkaline treatment. Hydrophobic interactions via aliphatic and aromatic residues were formed during isoelectric precipitation. Sarcoplasmic proteins were partially refolded after isoelectric precipitation followed by neutralization. Sarcoplasmic proteins prepared from an alkaline pH-shift process readily aggregated to form a gel at 45.10 °C, whereas higher thermal denaturation temperatures (>80 °C) and gel points (∼78 °C) were observed in acid-treated sarcoplasmic proteins. The pH condition used for extraction, precipitation, and neutralization greatly affected structural changes of sarcoplasmic proteins, leading to different thermal and dynamic rheological properties.

    Original languageEnglish
    Pages (from-to)4241-4249
    Number of pages9
    JournalJournal of agricultural and food chemistry
    Volume58
    Issue number7
    DOIs
    Publication statusPublished - 2010 Apr 14

    Keywords

    • Dynamic rheological properties
    • FT-Raman spectroscopy
    • PH-shifting
    • Sarcoplasmic proteins
    • Striped catfish

    ASJC Scopus subject areas

    • General Chemistry
    • General Agricultural and Biological Sciences

    Fingerprint

    Dive into the research topics of 'Structural changes and dynamic rheological properties of sarcoplasmic proteins subjected to pH-shift method'. Together they form a unique fingerprint.

    Cite this