Abstract
Hierarchical structured materials constructed with conductive carbon materials have been extensively studied as S host materials for Li-S batteries. However, their outwardly developed hierarchical structures, which do not contain structures or materials to inhibit polysulfide dissolution, lead to the dissipation of dissolved polysulfides and poor dispersion properties during the slurry-making process, which results in non-uniformity in the cathodes. Herein, an assembly of polar materials (hollow structured SiO2 microspheres) and electrically conductive hierarchical N-doped bamboo-like carbon nanotubes (b-NCNTs) is designed as an efficient S host material for minimizing the dissolution of polysulfides during Li-S battery operations. Highly aligned and packed b-NCNTs are grown in hollow structured SiO2 microspheres. The SiO2 layer coated on the surface of the hollow CoFe2O4 microspheres plays a key role in the synthesis of easily dispersible hierarchical b-NCNTs microspheres (b-NCNTs@SiO2). The S-loaded b-NCNTs@SiO2 electrodes show better cycling stability than S-loaded b-NCNTs electrodes. The polysulfide trapping of the polar SiO2 layer and the well-developed b-NCNTs minimize the dissolution of polysulfides during cycling. In addition, the introduction of electronegative N atoms into the b-NCNTs lattice enhances their polysulfide trapping ability. The S-loaded b-NCNTs@SiO2 electrodes exhibit stable discharge capacities of >771 mA h g-1 over 195 cycles at a current density of 0.5 C and a high reversible capacity of 486 mA h g-1 even at a high current density of 5.0 C.
Original language | English |
---|---|
Pages (from-to) | 2142-2153 |
Number of pages | 12 |
Journal | Nanoscale |
Volume | 12 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2020 Jan 21 |
ASJC Scopus subject areas
- Materials Science(all)