Structured low-rank matrix approximation in Gaussian process regression for autonomous robot navigation

Eunwoo Kim, Sungjoon Choi, Songhwai Oh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

This paper considers the problem of approximating a kernel matrix in an autoregressive Gaussian process regression (AR-GP) in the presence of measurement noises or natural errors for modeling complex motions of pedestrians in a crowded environment. While a number of methods have been proposed to robustly predict future motions of humans, it still remains as a difficult problem in the presence of measurement noises. This paper addresses this issue by proposing a structured low-rank matrix approximation method using nuclear-norm regularized l1-norm minimization in AR-GP for robust motion prediction of dynamic obstacles. The proposed method approximates a kernel matrix by finding an orthogonal basis using low-rank symmetric positive semi-definite matrix approximation assuming that a kernel matrix can be well represented by a small number of dominating basis vectors. The proposed method is suitable for predicting the motion of a pedestrian, such that it can be used for safe autonomous robot navigation in a crowded environment. The proposed method is applied to well-known regression and motion prediction problems to demonstrate its robustness and excellent performance compared to existing approaches.

Original languageEnglish
Title of host publication2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages69-74
Number of pages6
EditionJune
ISBN (Electronic)9781479969234
DOIs
Publication statusPublished - 2015 Jun 29
Externally publishedYes
Event2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States
Duration: 2015 May 262015 May 30

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
NumberJune
Volume2015-June
ISSN (Print)1050-4729

Other

Other2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Country/TerritoryUnited States
CitySeattle
Period15/5/2615/5/30

Bibliographical note

Publisher Copyright:
© 2015 IEEE.

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Structured low-rank matrix approximation in Gaussian process regression for autonomous robot navigation'. Together they form a unique fingerprint.

Cite this