TY - JOUR
T1 - Study of Aqueous Am(III)-Aliphatic Dicarboxylate Complexes
T2 - Coordination Mode-Dependent Optical Property and Stability Changes
AU - Kim, Hee Kyung
AU - Jeong, Keunhong
AU - Cho, Hye Ryun
AU - Kwak, Kyungwon
AU - Jung, Euo Chang
AU - Cha, Wansik
N1 - Funding Information:
This study is supported by the Nuclear Research and Development program of the National Research Foundation of Korea (Grant code: 2017M2A8A-5014719).
Publisher Copyright:
© 2020 American Chemical Society.
PY - 2020/10/5
Y1 - 2020/10/5
N2 - The thermodynamics of Am(III) complex formation in natural groundwater systems is one of the major topics of research in the field of high-level radioactive waste management. In this study, we investigate the absorption and luminescence properties of aqueous Am(III) complexes with a series of aliphatic dicarboxylates in order to learn the thermodynamic complexation behaviors in relation to binding geometries. The formation of Am(III) complexes with these carboxylate ligands induced distinct red shifts in the absorption spectra, which enabled chemical speciation. The formation constants determined by deconvolution of the absorption spectra showed a linear decrease for the three ligands (oxalate (Ox), malonate (Mal), and succinate (Suc)) and a mild decrease for the remaining ligands (glutarate (Glu) and adipate (Adi)). Time-resolved laser fluorescence spectroscopy (TRLFS) was used to obtain information about the aqua ligand, which indirectly indicated the bidentate bindings of these dicarboxylate ligands. A complementary attenuated total reflectance Fourier transform infrared (ATR-FTIR) study on Eu(III), which is a nonradioactive analogue of Am(III) ion, showed that the coordination modes differ depending on the alkyl chain length. Ox and Mal bind to Am(III) via side-on bidentate bindings with two carboxylate groups, resulting in the formation of stable 5- and 6-membered ring structures, respectively. On the other hand, Suc, Glu, and Adi form end-on bidentate bindings with a single carboxylate group, resulting in a 4-membered ring structure. Density functional theory calculations provided details about the bonding properties and supported the experimentally proposed coordination geometries. This study demonstrates that coordination mode-dependent changes in optical properties occur along with thermodynamic stability changes in Am(III)-dicarboxylate complexes.
AB - The thermodynamics of Am(III) complex formation in natural groundwater systems is one of the major topics of research in the field of high-level radioactive waste management. In this study, we investigate the absorption and luminescence properties of aqueous Am(III) complexes with a series of aliphatic dicarboxylates in order to learn the thermodynamic complexation behaviors in relation to binding geometries. The formation of Am(III) complexes with these carboxylate ligands induced distinct red shifts in the absorption spectra, which enabled chemical speciation. The formation constants determined by deconvolution of the absorption spectra showed a linear decrease for the three ligands (oxalate (Ox), malonate (Mal), and succinate (Suc)) and a mild decrease for the remaining ligands (glutarate (Glu) and adipate (Adi)). Time-resolved laser fluorescence spectroscopy (TRLFS) was used to obtain information about the aqua ligand, which indirectly indicated the bidentate bindings of these dicarboxylate ligands. A complementary attenuated total reflectance Fourier transform infrared (ATR-FTIR) study on Eu(III), which is a nonradioactive analogue of Am(III) ion, showed that the coordination modes differ depending on the alkyl chain length. Ox and Mal bind to Am(III) via side-on bidentate bindings with two carboxylate groups, resulting in the formation of stable 5- and 6-membered ring structures, respectively. On the other hand, Suc, Glu, and Adi form end-on bidentate bindings with a single carboxylate group, resulting in a 4-membered ring structure. Density functional theory calculations provided details about the bonding properties and supported the experimentally proposed coordination geometries. This study demonstrates that coordination mode-dependent changes in optical properties occur along with thermodynamic stability changes in Am(III)-dicarboxylate complexes.
UR - http://www.scopus.com/inward/record.url?scp=85092016298&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.0c01538
DO - 10.1021/acs.inorgchem.0c01538
M3 - Article
C2 - 32946238
AN - SCOPUS:85092016298
SN - 0020-1669
VL - 59
SP - 13912
EP - 13922
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 19
ER -