TY - GEN
T1 - Study on cuo doping effect on 0.69PZT-0.31PZNN for multi-layer piezoelectric energy harvesting system
AU - Song, Daniel
AU - Woo, Min Sik
AU - Ahn, Jung Hwan
AU - Sung, Tae Hyun
AU - Kim, Kyung Bum
AU - Nahm, Sahn
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/10/13
Y1 - 2014/10/13
N2 - In this study, we have investigated CuO doping effect on PZT-PZNN thick film for lower temperature sintering of multi-layer structure energy harvesting system. We prepared 0.69PZT-0.31PZNN powder, slurry, and green sheet to manufacture thick film ceramics with different doping amount of CuO. Various amount of CuO (0, 1, 2 and 3 mol%) were inserted into piezoelectric material composition of (Zr0.47Ti0.53)O3- 0.31Pb {(Ni0.6Zn0.4)1/3Nb2/3}O3. Laminated thick films with thickness of 0.310 mm were sintered at 900°C. Microstructures were investigated by using SEM and XRD. Also, dielectric property of sintered samples was measured by using d33 meter. As results, dielectric permittivity increases as CuO doping amount increases, which led to decrease in resistance and increase in capacitance value. CuO doping amount of 2 mol % was found to be the optimized point with the highest d33 value. This was explained by SEM images. The SEM images showed the increasing grain size as the CuO doping amount increase, and as the doping amount was 2 mol % or higher, secondary phase was observed in XRD. After measuring and analyzing the CuO doped samples, 2 mol% CuO doped PZT-PZNN thick film was placed on a SUS301 substrate to perform as a unimorph cantilever type energy harvesting system. First, the resonance frequency was observed in 39 Hz with 10.4V. At the resonance frequency, the impedance matching was found at the 2 M Ω, which the output power was calculated as 8 μW. This output power was then calculated as 0.267 mW/cm3.
AB - In this study, we have investigated CuO doping effect on PZT-PZNN thick film for lower temperature sintering of multi-layer structure energy harvesting system. We prepared 0.69PZT-0.31PZNN powder, slurry, and green sheet to manufacture thick film ceramics with different doping amount of CuO. Various amount of CuO (0, 1, 2 and 3 mol%) were inserted into piezoelectric material composition of (Zr0.47Ti0.53)O3- 0.31Pb {(Ni0.6Zn0.4)1/3Nb2/3}O3. Laminated thick films with thickness of 0.310 mm were sintered at 900°C. Microstructures were investigated by using SEM and XRD. Also, dielectric property of sintered samples was measured by using d33 meter. As results, dielectric permittivity increases as CuO doping amount increases, which led to decrease in resistance and increase in capacitance value. CuO doping amount of 2 mol % was found to be the optimized point with the highest d33 value. This was explained by SEM images. The SEM images showed the increasing grain size as the CuO doping amount increase, and as the doping amount was 2 mol % or higher, secondary phase was observed in XRD. After measuring and analyzing the CuO doped samples, 2 mol% CuO doped PZT-PZNN thick film was placed on a SUS301 substrate to perform as a unimorph cantilever type energy harvesting system. First, the resonance frequency was observed in 39 Hz with 10.4V. At the resonance frequency, the impedance matching was found at the 2 M Ω, which the output power was calculated as 8 μW. This output power was then calculated as 0.267 mW/cm3.
KW - CuO doping
KW - energy harvesting
KW - piezoelectricity
KW - tape casting
KW - thick film
UR - http://www.scopus.com/inward/record.url?scp=84910007966&partnerID=8YFLogxK
U2 - 10.1109/ISAF.2014.6923010
DO - 10.1109/ISAF.2014.6923010
M3 - Conference contribution
AN - SCOPUS:84910007966
T3 - 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices and Workshop on Piezoresponse Force Microscopy, ISAF/IWATMD/PFM 2014
BT - 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices and Workshop on Piezoresponse Force Microscopy, ISAF/IWATMD/PFM 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 Joint IEEE International Symposium on the Applications of Ferroelectric, International Workshop on Acoustic Transduction Materials and Devices and Workshop on Piezoresponse Force Microscopy, ISAF/IWATMD/PFM 2014
Y2 - 12 May 2014 through 16 May 2014
ER -