Abstract
In nature, carbon dioxide (CO2) conversion to valuable chemicals occurs via several metabolic pathways through multi-enzymatic reactions. Here, we aimed to mimic this by introducing enzyme immobilization in microbead compartments forming a stabilized multi-enzyme system. The system is assembled by encapsulation of phosphoenolpyruvate carboxylase (PEPCase) in branched polymeric microbeads followed by carbonic anhydrase (CA) immobilization on the silica-shell surface of the microbeads. The step-by-step construction of the CA/PEPCase microbeads is monitored based on the stability of each enzyme and cascade enzymatic oxaloacetate (OAA) production rate from a CO2 substrate. Each CA and PEPCase in the microbeads preserved their catalytic activity even after 20 times of reuse, with facile magnetic separability at room temperature. The CA/PEPCase system retained about 75% of the OAA production rate of free CA/PEPCase by forming a multi-enzyme/microbead complex structure. To the best of our knowledge, this report is the first demonstration of a stabilized cascade CA/PEPCase system that mimics the biomimetic CO2 conversion by a multi-enzymatic pathway found in biological systems.
Original language | English |
---|---|
Pages (from-to) | 7267-7272 |
Number of pages | 6 |
Journal | Catalysis Science and Technology |
Volume | 6 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2016 |
Bibliographical note
Publisher Copyright:© 2016 The Royal Society of Chemistry.
ASJC Scopus subject areas
- Catalysis