Abstract
This paper investigates multi-user multi-input multi- output cognitive wireless powered communication networks (WPCN), in which a secondary WPCN shares spectrum with a primary wireless information transfer system. A typical WPCN consists of two different phases. In the first downlink phase, a hybrid access point (H-AP) transfers energy to charge users, and then in the subsequent uplink phase, the users send information by using the harvested energy to the H-AP. We consider underlay cognitive WPCN without cooperation between the primary transmitter and the secondary H-AP. In this case, we formulate sum throughput maximization problem by taking the interference leakage to the primary network into consideration. The problem is generally non-convex due to coupled variables in the WPCN. To tackle this issue, we first convert the problem into equivalent convex form, and then identify the global optimal solution by applying the proposed iterative optimization algorithm. Finally, simulation results demonstrate that the proposed algorithm outperforms conventional schemes.
Original language | English |
---|---|
Title of host publication | 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781509013289 |
DOIs | |
Publication status | Published - 2016 |
Event | 59th IEEE Global Communications Conference, GLOBECOM 2016 - Washington, United States Duration: 2016 Dec 4 → 2016 Dec 8 |
Publication series
Name | 2016 IEEE Global Communications Conference, GLOBECOM 2016 - Proceedings |
---|
Other
Other | 59th IEEE Global Communications Conference, GLOBECOM 2016 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 16/12/4 → 16/12/8 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea Government (MSIP) under Grant 2014R1A2A1A10049769
Publisher Copyright:
© 2016 IEEE.
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Networks and Communications
- Hardware and Architecture
- Safety, Risk, Reliability and Quality