TY - GEN
T1 - Surface enhanced raman scattering (SERS) waveguide of crystalline organic microrod and bio-sensing application
AU - Jo, Seong Gi
AU - Kim, Jinsang
AU - Kim, Jeongyong
AU - Joo, Jinsoo
N1 - Funding Information:
This work was supported by the Center for Advanced Meta-Materials (CAMM) funded by the Ministry of Science, ICT and Future Planning as Global Frontier Project (CAMM-2014M3A6B3063710)
Publisher Copyright:
© 2015 Japan Society of Applied Physics, Optical Society of America.
PY - 2015
Y1 - 2015
N2 - One-dimensional photoluminescent nano- or micro-crystals have been used as active optical waveguiding materials. The output photoluminescence (PL) spectra and decay characteristics through the one-dimensional crystals have been intensively investigated [1]. Raman waveguide can also provide optical signal transport by means of specific molecular interaction modes, such as vibrational and rotational modes in highly crystalline organic nano- or micro-structures. Raman waveguiding can transport multi-signals corresponding to various molecular orientations of the materials [2]. But the waveguided Raman signals are typically very week. Therefore the waveguided Raman signals must be enhanced for applications. Surface enhanced Raman scattering (SERS) effect can be utilized for effective waveguiding of Raman signals.
AB - One-dimensional photoluminescent nano- or micro-crystals have been used as active optical waveguiding materials. The output photoluminescence (PL) spectra and decay characteristics through the one-dimensional crystals have been intensively investigated [1]. Raman waveguide can also provide optical signal transport by means of specific molecular interaction modes, such as vibrational and rotational modes in highly crystalline organic nano- or micro-structures. Raman waveguiding can transport multi-signals corresponding to various molecular orientations of the materials [2]. But the waveguided Raman signals are typically very week. Therefore the waveguided Raman signals must be enhanced for applications. Surface enhanced Raman scattering (SERS) effect can be utilized for effective waveguiding of Raman signals.
UR - http://www.scopus.com/inward/record.url?scp=85077205096&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85077205096
SN - 9784863485419
T3 - Optics InfoBase Conference Papers
BT - JSAP-OSA Joint Symposia, JSAP 2015
PB - Optica Publishing Group (formerly OSA)
T2 - JSAP-OSA Joint Symposia 2015
Y2 - 13 September 2015 through 16 September 2015
ER -