Abstract
A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were 2.86 × 10-12 - 1.24 × 10-9 Pa for the Ag-Sn system and 2.27 × 10-11 - 5.68 × 10-4 Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at XAg = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.
Original language | English |
---|---|
Pages (from-to) | 13-17 |
Number of pages | 5 |
Journal | Korean Journal of Materials Research |
Volume | 19 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- Molten alloy
- Oxygen partial pressure
- Surface tension
ASJC Scopus subject areas
- General Materials Science