TY - JOUR
T1 - Synergistic effects of hybrid conductive fillers on the electrical properties of carbon fiber pultruded polypropylene/polycarbonate composites prepared by injection molding
AU - Jang, Myung Geun
AU - Cho, Choonglai
AU - Kim, Woo Nyon
N1 - Publisher Copyright:
© The Author(s) 2016.
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - In this study, the effects of filler characteristics and composite preparation methods on the morphology, mechanical property, electrical conductivity, and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30, wt%)/hybrid conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as main filler and TiO2, multi-walled carbon nanotube, and graphite were used as second fillers in the composites. The pultruded NCCF/polypropylene composite was used in the preparation of the polypropylene/polycarbonate/NCCF/second filler composites. The electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate/NCCF/second filler composites were compared with the type of second filler. The superior value of electromagnetic interference shielding effectiveness was observed to be 51.6 dB (decibel) when the hybrid fillers such as NCCF (5.2 vol% or 20 wt%) and TiO2 (1.2 vol% or 5 wt%) were added in the polypropylene/polycarbonate (70/30) composite. The electrical properties of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites was compared with the composite preparation methods, which were injection molding and screw extrusion. The results suggested that fiber length of the NCCF affected significantly to the electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites.
AB - In this study, the effects of filler characteristics and composite preparation methods on the morphology, mechanical property, electrical conductivity, and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30, wt%)/hybrid conductive filler composites were investigated. Nickel-coated carbon fiber (NCCF) was used as main filler and TiO2, multi-walled carbon nanotube, and graphite were used as second fillers in the composites. The pultruded NCCF/polypropylene composite was used in the preparation of the polypropylene/polycarbonate/NCCF/second filler composites. The electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate/NCCF/second filler composites were compared with the type of second filler. The superior value of electromagnetic interference shielding effectiveness was observed to be 51.6 dB (decibel) when the hybrid fillers such as NCCF (5.2 vol% or 20 wt%) and TiO2 (1.2 vol% or 5 wt%) were added in the polypropylene/polycarbonate (70/30) composite. The electrical properties of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites was compared with the composite preparation methods, which were injection molding and screw extrusion. The results suggested that fiber length of the NCCF affected significantly to the electrical conductivity and electromagnetic interference shielding effectiveness of the polypropylene/polycarbonate (70/30)/NCCF/TiO2 composites.
KW - Polymer composite
KW - carbon fiber
KW - carbon nanotube
KW - electrical conductivity
KW - electromagnetic interference shielding effectiveness
KW - titanium dioxide
UR - http://www.scopus.com/inward/record.url?scp=85015085824&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015085824&partnerID=8YFLogxK
U2 - 10.1177/0021998316658536
DO - 10.1177/0021998316658536
M3 - Article
AN - SCOPUS:85015085824
SN - 0021-9983
VL - 51
SP - 1005
EP - 1017
JO - Journal of Composite Materials
JF - Journal of Composite Materials
IS - 7
ER -