Abstract
Lead chalcogenide nanocrystalline materials offer possibilities of improving the efficiency of various optoelectric/thermoelectric applications, especially in solar cells, by generating more carriers with incoming photons, or by extending the bandgap toward the infra-red region. In this work, we suggest the synthetic approach of creating extended PbSe structures which shows better performances when incorporated into an electric device. Firstly, we synthesized monodisperse cubic-structured single-crystalline lead selenide nanocrystal quantum dots using lead acetate and oleic acid in noncoordinating solvent without additional surfactants. Also, single-crystal cubic PbSe nanowires were synthesized in a mixture of surfactants such as trioctylphosphine and phenyl ether. Morphologies of wires and dots were precisely controlled via reaction temperature and the surface ligands. Phenyl ether was found to facilitate the oriented attachment. Further, current-voltage characteristics of drop-casted 2D arrays of nanocrystalline materials were examined.
Original language | English |
---|---|
Pages (from-to) | 4347-4350 |
Number of pages | 4 |
Journal | Journal of Nanoscience and Nanotechnology |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2011 May |
Externally published | Yes |
Keywords
- Colloidal synthesis
- Lead selenide nanocrystal quantum dot
- Nanowire
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics