Synthesis and Inpainting-Based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors

Dongming Wei, Sahar Ahmad, Jiayu Huo, Wen Peng, Yunhao Ge, Zhong Xue, Pew Thian Yap, Wentao Li, Dinggang Shen, Qian Wang*

*Corresponding author for this work

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    29 Citations (Scopus)

    Abstract

    Thermal ablation is a minimally invasive procedure for treating small or unresectable tumors. Although CT is widely used for guiding ablation procedures, the contrast of tumors against surrounding normal tissues in CT images is often poor, aggravating the difficulty in accurate thermal ablation. In this paper, we propose a fast MR-CT image registration method to overlay a pre-procedural MR (pMR) image onto an intra-procedural CT (iCT) image for guiding the thermal ablation of liver tumors. By first using a Cycle-GAN model with mutual information constraint to generate synthesized CT (sCT) image from the corresponding pMR, pre-procedural MR-CT image registration is carried out through traditional mono-modality CT-CT image registration. At the intra-procedural stage, a partial-convolution-based network is first used to inpaint the probe and its artifacts in the iCT image. Then, an unsupervised registration network is used to efficiently align the pre-procedural CT (pCT) with the inpainted iCT (inpCT) image. The final transformation from pMR to iCT is obtained by combining the two estimated transformations, i.e., (1) from the pMR image space to the pCT image space (through sCT) and (2) from the pCT image space to the iCT image space (through inpCT). Experimental results confirm that the proposed method achieves high registration accuracy with a very fast computational speed.

    Original languageEnglish
    Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
    EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
    PublisherSpringer Science and Business Media Deutschland GmbH
    Pages512-520
    Number of pages9
    ISBN (Print)9783030322533
    DOIs
    Publication statusPublished - 2019
    Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
    Duration: 2019 Oct 132019 Oct 17

    Publication series

    NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume11768 LNCS
    ISSN (Print)0302-9743
    ISSN (Electronic)1611-3349

    Conference

    Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
    Country/TerritoryChina
    CityShenzhen
    Period19/10/1319/10/17

    Bibliographical note

    Publisher Copyright:
    © 2019, Springer Nature Switzerland AG.

    Keywords

    • Image registration
    • Liver tumor
    • Neural network
    • Thermal ablation

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • General Computer Science

    Fingerprint

    Dive into the research topics of 'Synthesis and Inpainting-Based MR-CT Registration for Image-Guided Thermal Ablation of Liver Tumors'. Together they form a unique fingerprint.

    Cite this