Abstract
A novel magnetic adsorbent of Fe 3 O 4 /γ-Al 2 O 3 hybrid composite (denoted as M-Fe/Al-H) was developed electrochemically via a sequential application of iron and aluminum electrodes in a one-pot fashion, which called here as electrode-alternation technique, followed by pyrolysis. Physical and chemical properties of the prepared adsorbents were characterized and their feasibility towards the removal of di-anionic azo dye Acid Black 1 (AB1) was assessed. Textural and structural characterization revealed that the prepared M-Fe/Al-H possesses superior properties than those of M-Fe (sole usage of iron electrode), which may improve the adsorption capacity. Kinetics revealed that the adsorption equilibrium was reached within 12 h with approximately 90% of the equilibrium adsorption capacity within the first 3 h. Comprehensive analysis using the pseudo-second order and intraparticle diffusion models indicated that the dominant mechanism of the reaction is film diffusion with intraparticle diffusion being the rate determining step. The adsorption equilibrium isotherm data were best represented by the Sips isotherm model, which found to be approximately 1501, 1786, and 1959 mg/g at 283, 293, and 303 K, respectively. The exceptional performance as well as its ease of separation allows M-Fe/Al-H to be a promising candidate as an effective for azo dye removal from various aqueous medium.
Original language | English |
---|---|
Pages (from-to) | 383-393 |
Number of pages | 11 |
Journal | Applied Surface Science |
Volume | 423 |
DOIs | |
Publication status | Published - 2017 Nov 30 |
Bibliographical note
Publisher Copyright:© 2017 Elsevier B.V.
Keywords
- Acid black 1
- Electrochemical synthesis
- Gamma alumina
- Magnetic adsorbent
- Magnetite
ASJC Scopus subject areas
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Surfaces and Interfaces