Abstract
The high price of petroleum-based diesel fuel has led to the development of alternative fuels, such as ethanol. Saccharomyces cerevisiae was metabolically engineered to utilize glycerol as a substrate for ethanol production. For the synthesis of fatty acid ethyl esters (FAEEs) by engineered S. cerevisiae that utilize glycerol as substrate, heterologous expression of an unspecific acyltransferase from Acinetobacter baylyi with glycerol utilizing genes was established. As a result, the engineered YPH499 (pGcyaDak, pGupWs-DgaTCas) strain produced 0.24g/L FAEEs using endogenous ethanol produced from glycerol. And this study also demonstrated the possibility of increasing FAEE production by enhancing ethanol production by minimizing the synthesis of glycerol. The overall FAEE production in strain YPH499 fps1Δ gpd2Δ (pGcyaDak, pGupWs-DgaTCas) was 2.1-fold more than in YPH499 (pGcyaDak, pGupWs-DgaTCas), with approximately 0.52g/L FAEEs produced, while nearly 17g/L of glycerol was consumed. These results clearly indicated that FAEEs were synthesized in engineered S. cerevisiae by esterifying exogenous fatty acids with endogenously produced ethanol from glycerol. This microbial system acts as a platform in applying metabolic engineering that allows the production of FAEEs from cheap and abundant substrates specifically glycerol through the use of endogenous bioethanol.
Original language | English |
---|---|
Pages (from-to) | 110-115 |
Number of pages | 6 |
Journal | Biotechnology and Bioengineering |
Volume | 109 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 Jan |
Keywords
- Acyltransferase
- Endogenously produced ethanol
- Fatty acid ethyl esters
- Glycerol
- Saccharomyces cerevisiae
ASJC Scopus subject areas
- Biotechnology
- Bioengineering
- Applied Microbiology and Biotechnology