TY - JOUR
T1 - Synthesis of Multifunctional Silica Composites Encapsulating a Mixture Layer of Quantum Dots and Magnetic Nanoparticles
AU - Park, Wooyoung
AU - Jang, Ho Seong
AU - Lee, Kwangyeol
AU - Woo, Kyoungja
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Multifunctional silica colloidal composites with enhanced photoluminescence (PL) and superparamagnetism are reported. Enhanced PL and superparamagnetism were achieved by encapsulating a mixture layer of quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) within a silica sphere, wherein QDs and SPIONs were capped by 3-mercaptopropionic acid (MPA) and 2-carboxy ethyl phosphonic acid (CEPA), respectively. The silica composites encapsulating a mixture layer of QDs and SPIONs, i.e., S(Q,M)S core(layer)shell architectures with various diameters (80, 360, and 900 nm) were successfully prepared by utilizing electrostatic interaction between positively charged amine-functionalized silica (S) and negatively charged mixture of QD–MPA (Q) and SPION–CEPA (M) and then, by forming a silica shell of 10–20 nm. The S(Q,M)S showed more than twice higher PL intensity than MPA-capped QD with the same QD concentration. Increasing the molar ratio of M/Q from 0.02 to 0.05 in the S(Q,M)S increased the saturation magnetization value from 0.15 to 0.62 emu/g. The S(Q,M)S composites with enhanced PL intensity and superparamagnetism are expected to be a plausible probe material for bioimaing and sensing application. Also, the current synthetic strategy for S(Q,M)S composites is expected to be extendible to include other functional nanoparticles.
AB - Multifunctional silica colloidal composites with enhanced photoluminescence (PL) and superparamagnetism are reported. Enhanced PL and superparamagnetism were achieved by encapsulating a mixture layer of quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) within a silica sphere, wherein QDs and SPIONs were capped by 3-mercaptopropionic acid (MPA) and 2-carboxy ethyl phosphonic acid (CEPA), respectively. The silica composites encapsulating a mixture layer of QDs and SPIONs, i.e., S(Q,M)S core(layer)shell architectures with various diameters (80, 360, and 900 nm) were successfully prepared by utilizing electrostatic interaction between positively charged amine-functionalized silica (S) and negatively charged mixture of QD–MPA (Q) and SPION–CEPA (M) and then, by forming a silica shell of 10–20 nm. The S(Q,M)S showed more than twice higher PL intensity than MPA-capped QD with the same QD concentration. Increasing the molar ratio of M/Q from 0.02 to 0.05 in the S(Q,M)S increased the saturation magnetization value from 0.15 to 0.62 emu/g. The S(Q,M)S composites with enhanced PL intensity and superparamagnetism are expected to be a plausible probe material for bioimaing and sensing application. Also, the current synthetic strategy for S(Q,M)S composites is expected to be extendible to include other functional nanoparticles.
KW - Enhanced photoluminescence
KW - Multifunctional silica composite
KW - Quantum dot (QD)
KW - SPION
UR - http://www.scopus.com/inward/record.url?scp=84927645750&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84927645750&partnerID=8YFLogxK
U2 - 10.1007/s10904-013-9988-5
DO - 10.1007/s10904-013-9988-5
M3 - Article
AN - SCOPUS:84927645750
SN - 1574-1443
VL - 24
SP - 78
EP - 86
JO - Journal of Inorganic and Organometallic Polymers and Materials
JF - Journal of Inorganic and Organometallic Polymers and Materials
IS - 1
ER -