TY - GEN
T1 - Temperature-compensated micro cone penetrometer by using FBG sensor
AU - Kim, Raehyun
AU - Lee, Woojin
AU - An, Shinwhan
AU - Yoon, Hyung Koo
AU - Lee, Jong Sub
PY - 2009
Y1 - 2009
N2 - Electric resistance strain gauges have been widely used for the manufacturing the cone penetrometer. Measured values by strain gauges, however, are affected by various factors such as electromagnetic wave, temperature, self heating, and the length of the lead wire. In this paper, micro cone penetrometers with 3-7mm in diameter, are developed by using a FBG (fiber Bragg grating) sensor to improve the defect and the limitation of strain gage type cone penetrometer. Note FBG sensor, which is a kind of fiber optic sensor and has hair-size in diameter, is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Stain gage type cone penetrometer shows that the output voltage changes and increases with an increase in the temperature. The FBG cone penetrometer, however, produces the steady state value because the temperature change is efficiently compensated. The temperature compensated FBG cone penetrometer shows excellent sensitivity and detects the interface of the layered soils with higher resolution. In addition, the temperature change near the cone tip is monitored during the cone penetration. This study demonstrates that the FBG sensor renders the possibility of the ultra small size cone and the new micro cone penetrometer may produce more reliable resistance.
AB - Electric resistance strain gauges have been widely used for the manufacturing the cone penetrometer. Measured values by strain gauges, however, are affected by various factors such as electromagnetic wave, temperature, self heating, and the length of the lead wire. In this paper, micro cone penetrometers with 3-7mm in diameter, are developed by using a FBG (fiber Bragg grating) sensor to improve the defect and the limitation of strain gage type cone penetrometer. Note FBG sensor, which is a kind of fiber optic sensor and has hair-size in diameter, is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Stain gage type cone penetrometer shows that the output voltage changes and increases with an increase in the temperature. The FBG cone penetrometer, however, produces the steady state value because the temperature change is efficiently compensated. The temperature compensated FBG cone penetrometer shows excellent sensitivity and detects the interface of the layered soils with higher resolution. In addition, the temperature change near the cone tip is monitored during the cone penetration. This study demonstrates that the FBG sensor renders the possibility of the ultra small size cone and the new micro cone penetrometer may produce more reliable resistance.
KW - CPT
KW - FBG sensor
KW - Layered soil detection
KW - Micro cone penetrometer
KW - Temperature compensation
KW - Temperature effect
UR - http://www.scopus.com/inward/record.url?scp=74549179620&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:74549179620
SN - 9781880653531
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 172
EP - 176
BT - The Proceedings of the 19th (2009) International OFFSHORE AND POLAR ENGINEERING CONFERENCE
T2 - 19th (2009) International OFFSHORE AND POLAR ENGINEERING CONFERENCE
Y2 - 21 June 2009 through 26 June 2009
ER -