Abstract
The doping process in diffusion furnace consisting of pre-deposition and drive-in steps is essential to create p-n junction in crystalline silicon solar cell fabrication, and its optimization is necessary to obtain the high conversion efficiency. In this work, pre-deposition time was varied to study the electrical properties of solar cells and its effect on the hydrogen passivation with various phosphorous doping profiles. As a result, solar cell conversion efficiency of 17.8% with 7 min pre-deposition was achieved. Dopant (phosphorous) concentration in the emitter measured by SIMS indicated that the surface with shorter pre-deposition time had lower dopant concentration. High concentration of phosphorous on the surface appears to be the source for the electron consumed by the stored hydrogen in making the neutral H2 gas during firing. The formation of neutral hydrogen gas is thermodynamically and stochastically more favorable than the reaction between Si with dangling bond and H. This means that the passivation by the stored H during firing is strongly controlled by the dopant on the surface. This result obtained herein lays the foundations to understand the relationship between the doping profile of diverse dopant species and its passivation effect.
Original language | English |
---|---|
Pages (from-to) | 96-100 |
Number of pages | 5 |
Journal | Renewable Energy |
Volume | 54 |
DOIs | |
Publication status | Published - 2013 Jun |
Bibliographical note
Funding Information:This work was supported by Korea Institute of Energy Research (No. GP2012-0002 ) and the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2011T100100611 ).
Keywords
- Crystalline silicon solar cell
- Doping
- Passivation
- Pre-deposition
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment