Abstract
Pluripotent stem cells (PSCs) offer a promising tool for regenerative medicine. The clinical application of PSCs inevitably requires a large-scale culture in a highly defined environment. The present study aimed to devise defined coating materials for the efficient adhesion and proliferation of human PSCs (hPSCs). We tested the activity of seven fibronectin-derived peptides and three laminin-derived peptides for the attachment and proliferation of hPSCs through their immobilization on the bottom of culture dishes by creating a fusion protein with the mussel adhesion protein. Among the extracellular matrix (ECM) mimetics tested, one fibronectin-derived peptide, PHSRN-GRGDSP, significantly promoted adhesion, enhanced alkaline phosphatase activity, and increased pluripotency-related gene expression in hPSCs compared to Matrigel. Furthermore, co-immobilization of a particular canofin peptide derived from fibroblast growth factor 2 increased pluripotency marker expression, which may offer the possibility of culture without growth factor supplementation. Our findings afford a novel defined condition for the efficient culture of hPSCs and may be utilized in future clinical applications.
Original language | English |
---|---|
Article number | 101700 |
Journal | Stem Cell Research |
Volume | 43 |
DOIs | |
Publication status | Published - 2020 Mar |
Keywords
- Adhesion
- ECM motif
- Human induced pluripotent stem cell
- Niche
- Pluripotency
- Proliferation
- Stem cell
ASJC Scopus subject areas
- Developmental Biology
- Cell Biology