Abstract
A theoretical description of one- and two-color photon echo peak shifts (PEPS) and two-dimensional (2D) photon echo spectrum (PES) of a coupled chromophore system are presented. The effects of population relaxation in the one-exciton states on both the PEPS and the 2D PES are investigated. For values of time T shorter than the population relaxation time, a finite two-color peak shift magnitude and nonzero cross peaks in the 2D PES provide evidence of electronic coupling between the chromophores. These two distinct observables, i.e., PEPS and off-diagonal peaks, both originate from the electronic coupling. However, it is shown that the PEPS and 2D PES methods can provide complementary information on the structure-dependent nonlinear optical responses of coupled chromophore systems.
Original language | English |
---|---|
Journal | The Journal of Chemical Physics |
Volume | 123 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2005 Sept 15 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics