Abstract
Brain circuits involved in pattern completion, or retrieval of memory from fragmented cues, were investigated. Using different versions of the Morris water maze, we explored the roles of the CA3 subregion of the hippocampus and the medial prefrontal cortex (mPFC) in spatial memory retrieval under various conditions. In a hidden platform task, both CA3 and mPFC lesions disrupted memory retrieval under partial-cue, but not under full-cue, conditions. For a delayed matching-to-place task, CA3 lesions produced a deficit in both forming and recalling spatial working memory regardless of extramaze cue conditions. In contrast, damage to mPFC impaired memory retrieval only when a fraction of cues was available. To corroborate the lesion study, we examined the expression of the immediate early gene c-fos in mPFC and the hippocampus. After training of spatial reference memory in full-cue conditions for 6 d, the same training procedure in the absence of all cues except one increased the number of Fos-immunoreactive cells in mPFC and CA3. Furthermore, mPFC inactivation with muscimol, a GABA agonist, blocked memory retrieval in the degraded-cue environment. However, mPFC-lesioned animals initially trained in a single-cue environment had no difficulty in retrieving spatial memory when the number of cues was increased, demonstrating that contextual change per se did not impair the behavioral performance of the mPFC-lesioned animals. Together, these findings strongly suggest that pattern completion requires interactions between mPFC and the hippocampus, in which mPFC plays significant roles in retrieving spatial information maintained in the hippocampus for efficient navigation.
Original language | English |
---|---|
Pages (from-to) | 13567-13578 |
Number of pages | 12 |
Journal | Journal of Neuroscience |
Volume | 27 |
Issue number | 49 |
DOIs | |
Publication status | Published - 2007 Dec 5 |
Keywords
- CA3
- Memory retrieval
- Pattern completion
- Prefrontal cortex
- Spatial memory
- Water maze
- c-fos
ASJC Scopus subject areas
- General Neuroscience