The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles

Hongling Liu, Peng Hou, Wengxing Zhang, Young Keun Kim, Junhua Wu

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

We report the one-pot nanoemulsion synthesis of FeAu magnetic-optical multifunctional nanoparticles coated by the biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO). The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the resulting nanoparticles. The structural characterization identifies the crystallographic parameter 4.072 Å of the cubic phase and the morphology analysis gives the nanoparticle shape, size and size distribution, showing the high crystallinity of the FeAu nanoparticles and an average particle size of ∼6.5nm. In addition there is direct confirmation of the alloying by elemental point probing of an individual nanoparticle. Following the visual demonstration of a rapid, efficient and reversible dispersion-collection process of the nanoparticles in solution, the magnetic measurement manifests a soft ferromagnetic behavior of the nanoparticles with a small coercivity of ∼60 Oe at room temperature. The corresponding magnetic hysteresis curves were effectively assessed by modified bi-phase Langevin equations, which were satisfactorily explained in terms of a bimodal particle size distribution. The UV-vis studies display the broadband absorption of the PEO-PPO-PEO-coated nanoparticles with the maximum surface plasmon resonance around 585 nm. The characterization and analysis, therefore, shows the unification of iron and gold into one alloy nanostructure entity covered by the biocompatible triblock copolymer thin film, preserving the optical and magnetic properties of the individual constituents. This gives the prospect of enhanced performance in applications.

Original languageEnglish
Article number335602
JournalNanotechnology
Volume21
Issue number33
DOIs
Publication statusPublished - 2010 Aug 20

ASJC Scopus subject areas

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The synthesis and characterization of polymer-coated FeAu multifunctional nanoparticles'. Together they form a unique fingerprint.

Cite this