Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations

Sanghyeok Lee, Mansoo Park, Hyoungchul Kim, Kyung Joong Yoon, Ji Won Son, Jong Ho Lee, Byung Kook Kim, Wonjoon Choi, Jongsup Hong

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Elucidating internal thermal conditions of high-temperature solid oxide fuel cell (SOFC) stacks is essential for obtaining a substantial thermal efficiency and reliability for long-term operations prior to their commercialization. To examine simultaneous heat transfer and its generation and their effect on the local thermodynamic state, a high-fidelity physical model that resolves spatially the three-dimensional structure of planar, anode-supported SOFC stacks is used in this study. Results show that thermal conduction through metallic interconnects plays a key role in transferring the heat produced by joule heating and electrochemical reactions and thus determining the internal thermal conditions. The heat generated from the electrolyte and thin reactive electrode layers is transferred to the interconnect predominantly by gaseous convection and conduction through materials in the anode and cathode, respectively. The interconnect subsequently transports this heat conductively towards gas inlets and/or surrounding repeating units, influencing temperature increments, its profile and hot spot formation. Its effect on the internal thermal conditions was further examined by a parametric study with respect to the thermal property and geometry of the interconnect which determine its thermal resistance. They indeed affect significantly heat generation and its transfer within the cell, through its boundaries, between repeating units and to incoming gases.

Original languageEnglish
Pages (from-to)293-305
Number of pages13
Publication statusPublished - 2017

Bibliographical note

Funding Information:
This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (grant number 20153010031940) and partially supported by the Institutional Research Program of the Korea Institute of Science and Technology (grant number 2E26081).

Publisher Copyright:
© 2016 Elsevier Ltd


  • Heat generation
  • Heat transfer
  • Modeling
  • Solid oxide fuel cell
  • Thermal resistance

ASJC Scopus subject areas

  • Mechanical Engineering
  • Pollution
  • Energy Engineering and Power Technology
  • General Energy
  • Electrical and Electronic Engineering
  • Management, Monitoring, Policy and Law
  • Industrial and Manufacturing Engineering
  • Building and Construction
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment
  • Civil and Structural Engineering
  • Modelling and Simulation


Dive into the research topics of 'Thermal conditions and heat transfer characteristics of high-temperature solid oxide fuel cells investigated by three-dimensional numerical simulations'. Together they form a unique fingerprint.

Cite this