Abstract
Miniaturized microelectronics or small modular reactors (SMRs) simultaneously undergo an increase in heat flux and a decrease in size with the enhancement of device functionalities. Therefore, efficient convection cooling is required to prevent the malfunctioning of electronic devices or small nuclear reactors. Herein, mesh-patterned copper pyramids were fabricated via supersonic spraying for surface cooling applications. Zinc oxide nanowires (ZnO NWs) were patterned on top of the copper pyramids to produce a highly efficient cooling system for a high-heat-flux surface by increasing the overall surface area of the pyramids. In addition, ZnO NW decoration imparted superhydrophilicity to the surface with firm anchoring and spreading of impacting spray liquid drops until complete evaporation. The effects of macroscale pyramid mesh resolution and introduction of ZnO NWs on the spray cooling efficiency were quantified and compared. Herein, the pyramids with coarse resolution and ZnO NWs yielded the highest heat flux during the drop impact heat transfer process and the lowest surface temperature under air and spray cooling conditions owing to the maximized surface area. The use of the pyramids and introduction of ZnO NWs increased the Leidenfrost temperature from 140 to 190 °C, thereby expanding the range of the evaporation cooling regime.
Original language | English |
---|---|
Article number | 104093 |
Journal | Case Studies in Thermal Engineering |
Volume | 55 |
DOIs | |
Publication status | Published - 2024 Mar |
Bibliographical note
Publisher Copyright:© 2024 The Authors
Keywords
- Copper pyramids
- Electronics cooling
- Spray evaporation
- Zinc nanowires
ASJC Scopus subject areas
- Engineering (miscellaneous)
- Fluid Flow and Transfer Processes