Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry

Dimberu G. Atinafu, Yong Sik Ok, Harn Wei Kua, Sumin Kim

    Research output: Contribution to journalArticlepeer-review

    135 Citations (Scopus)

    Abstract

    The design of composite phase change materials (PCMs) for thermal energy storage has attracted increasing attention owing to their high latent heat storage capability, enhanced thermal transfer performance, and low volume variation in addition to being seepage free. This review aims to provide techniques for engineering the thermal parameters of composite PCMs (e.g., latent heat, thermal conductivity, durability, and thermal stability) for several advanced large-scale applications and for producing desired thermophysical, chemical, and mechanical properties. In addition, approaches and materials employed for composite synthesis are described. Challenges and factors influencing the thermal energy storage performance of composite PCMs are also analyzed. Furthermore, the recent advanced applications of composite PCMs (including medical, building, electronics, solar, and energy storage and conversion) as well as the potential for producing energy storage and conversion materials are indicated. This report is likely to provide a foundation for designing multifunctional organic composite PCMs.

    Original languageEnglish
    Article number115960
    JournalApplied Thermal Engineering
    Volume181
    DOIs
    Publication statusPublished - 2020 Nov 25

    Bibliographical note

    Funding Information:
    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [No. 2019R1A2C4100284 ]; and This work was supported (in part) by the Yonsei University Research Fund (Yonsei Frontier Lab. Young Researcher Supporting Program) of 2020.

    Publisher Copyright:
    © 2020 Elsevier Ltd

    Keywords

    • Composite PCMs
    • Engineering thermal parameters
    • Thermal energy storage

    ASJC Scopus subject areas

    • Energy Engineering and Power Technology
    • Industrial and Manufacturing Engineering

    Fingerprint

    Dive into the research topics of 'Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry'. Together they form a unique fingerprint.

    Cite this