Abstract
The coupling of spin and heat gives rise to new physical phenomena in nanoscale spin devices. In particular, spin-transfer torque (STT) driven by thermal transport provides a new way to manipulate local magnetization. We quantify thermal STT in metallic spin-valve structures using an intense and ultrafast heat current created by picosecond pulses of laser light. Our result shows that thermal STT consists of demagnetization-driven and spin-dependent Seebeck effect (SDSE)-driven components; the SDSE-driven STT becomes dominant after 3 ps. The sign and magnitude of the SDSE-driven STT can be controlled by the composition of a ferromagnetic layer and the thickness of a heat sink layer.
Original language | English |
---|---|
Pages (from-to) | 576-581 |
Number of pages | 6 |
Journal | Nature Physics |
Volume | 11 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2015 Jul 1 |
Bibliographical note
Funding Information:TDTR and TR-MOKE measurements were carried out in the Laser and Spectroscopy Laboratory of the Materials Research Laboratory at the University of Illinois Urbana-Champaign. Sample growth and VSM measurements were carried out at the Korea Institute of Science and Technology (KIST). G-M.C. and D.G.C. were supported by the Army Research Office MURI W911NF-14-1-0016. C-H.M. and B-C.M. were supported by the KIST institutional program and the Pioneer Research Center Program of MSIP/NRF (2011-0027905). K-J.L. was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2013R1A2A2A01013188) and the KU-KIST Graduate School of Converging Science and Technology Program.
Publisher Copyright:
© 2015 Macmillan Publishers Limited. All rights reserved.
ASJC Scopus subject areas
- General Physics and Astronomy