Abstract
Molecular junctions can be miniaturized devices for heat-to-electricity conversion application, yet these operate only in mild thermal environments (less than 323 K) because thiol, the most widely used anchor moiety for chemisorption of active molecules onto surface of electrode, easily undergoes thermal degradation. N-Heterocyclic carbene (NHC) can be an alternative to traditional thiol anchor for producing ultrastable thermoelectric molecular junctions. Our experiments showed that the NHC-based molecular junctions withstood remarkably high temperatures up to 573 K, exhibiting consistent Seebeck effect and thermovoltage up to approximately |1900 μV|. Our work advances our understanding of molecule-electrode contact in the Seebeck effect, providing a roadmap for constructing robust and efficient organic thermoelectric devices.
Original language | English |
---|---|
Pages (from-to) | 3953-3960 |
Number of pages | 8 |
Journal | Nano Letters |
Volume | 22 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2022 May 25 |
Bibliographical note
Funding Information:This research was supported by the NRF of Korea (Grants NRF-2019R1A2C2011003, NRF-2021M3F3A2A03017999, and NRF-2019R1A6A1A11044070). S.P. acknowledges the support of the POSCO TJ Park Doctoral Fellowship and the Korea University Graduate School Junior Fellowship.
Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
Keywords
- harsh thermal environments
- molecular junction
- Seebeck effect
- self-assembled monolayer (SAM)
- temperature
- thermoelectrics
ASJC Scopus subject areas
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering