Abstract
Purpose. This study was performed to validate a newly developed sentinel lymph node (SLN) targeting tracer, indocyanine green-neomannosyl human serum albumin (ICG:MSA), and a thoracoscopic version of the intraoperative color and fluorescence imaging system (ICFIS) for lung cancer SLN mapping. Methods. ICG alone or ICG:MSA (5 μg/kg) was injected into the rat thigh, and the results were compared. The fluorescence signal-to-background ratios of SLNs were recorded and evaluated over a 2-h period by using ICFIS. Additionally, a SLN biopsy was performed via video-assisted thoracoscopic surgery with the use of ICG:MSA in porcine lung by using thoracoscopic ICFIS. Results. The newly developed ICG:MSA showed a significantly improved signal-to-background ratio compared with ICG alone throughout the trials. All SLNs were identified in both rats (ten SLNs in ten rat thighs) and pigs (ten SLNs in ten porcine lungs) under in vivo conditions. All SLNs were dissected successfully by using video-assisted thoracoscopic surgery with the help of thoracoscopic ICFIS. Discussion. ICG:MSA accumulates in the SLN by uptake and retention through the mannose-specific receptors on macrophages. Thoracoscopic ICFIS successfully assisted SLN mapping despite low near-infrared light transmission in the commercial thoracoscope. On the basis of the results of the thoracoscopic SLN mapping, we anticipate that ICG:MSA and thoracoscopic ICFIS can be translated to clinical trials in the near future.
Original language | English |
---|---|
Pages (from-to) | 1182-1188 |
Number of pages | 7 |
Journal | Annals of Surgical Oncology |
Volume | 21 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 Apr |
ASJC Scopus subject areas
- Surgery
- Oncology