TY - JOUR
T1 - Three-dimensionally ordered mesoporous multicomponent (Ni, Mo) metal oxide/N-doped carbon composite with superior Li-ion storage performance
AU - Oh, Se Hwan
AU - Kim, Jin Koo
AU - Kang, Yun Chan
AU - Cho, Jung Sang
N1 - Funding Information:
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A4A1024691, NRF-2017M1A2A2087577, and NRF-2017R1A4A1014806).
PY - 2018/10/21
Y1 - 2018/10/21
N2 - Among the various nanostructures, porous materials with controlled pore structures have been widely used for designing transition metal-based anode materials for lithium-ion batteries, because they provide good access to electrolyte and can effectively accommodate stress arising from volume changes. In particular, ternary transition metal oxide materials containing nanovoids, arranged with high degree of periodicity, are ideal for enhancing lithium-ion storage capability. In this study, we provide a method using spray pyrolysis for the synthesis of mesoporous multicomponent metal oxide microspheres containing Ni and Mo components and N-doped carbon, in which three-dimensionally ordered 40 nm-sized mesopores are interconnected. During the synthesis, polystyrene nanobeads are used as a sacrificial template and are readily eliminated via thermal decomposition. Increased concentrations of polystyrene nanobeads enables the formation of open channels throughout the microspheres. When employed as a lithium-ion battery anode, the mesoporous multicomponent metal oxide microspheres containing Ni and Mo components and N-doped carbon exhibit high reversible capacity, good cycling stability, and excellent rate performance. After 1000 cycles, the microspheres deliver a discharge capacity of 693 mA h g-1 at a current density of 1.0 A g-1.
AB - Among the various nanostructures, porous materials with controlled pore structures have been widely used for designing transition metal-based anode materials for lithium-ion batteries, because they provide good access to electrolyte and can effectively accommodate stress arising from volume changes. In particular, ternary transition metal oxide materials containing nanovoids, arranged with high degree of periodicity, are ideal for enhancing lithium-ion storage capability. In this study, we provide a method using spray pyrolysis for the synthesis of mesoporous multicomponent metal oxide microspheres containing Ni and Mo components and N-doped carbon, in which three-dimensionally ordered 40 nm-sized mesopores are interconnected. During the synthesis, polystyrene nanobeads are used as a sacrificial template and are readily eliminated via thermal decomposition. Increased concentrations of polystyrene nanobeads enables the formation of open channels throughout the microspheres. When employed as a lithium-ion battery anode, the mesoporous multicomponent metal oxide microspheres containing Ni and Mo components and N-doped carbon exhibit high reversible capacity, good cycling stability, and excellent rate performance. After 1000 cycles, the microspheres deliver a discharge capacity of 693 mA h g-1 at a current density of 1.0 A g-1.
UR - http://www.scopus.com/inward/record.url?scp=85054914219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054914219&partnerID=8YFLogxK
U2 - 10.1039/c8nr06727a
DO - 10.1039/c8nr06727a
M3 - Article
C2 - 30270367
AN - SCOPUS:85054914219
SN - 2040-3364
VL - 10
SP - 18734
EP - 18741
JO - Nanoscale
JF - Nanoscale
IS - 39
ER -