Time-Dependent Variations of Compressive Strength and Small-Strain Stiffness of Sands Grouted with Microfine Cement

Boyoung Yoon, Woojin Lee, Changho Lee, Hyunwook Choo

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Unconfined compressive strength (qucs) and maximum shear modulus (Gmax), which are essential properties of grouted sands for quality control and stable design, exhibit a nonlinear behavior with curing time that makes it difficult to estimate the long-term qucs and/or Gmax. This study investigates the applicability of the hyperbolic model to capture the nonlinear development of qucs and Gmax of grouted sands relative to curing time, with the ultimate goal of estimating the long-term qucs. Three sands with varying particle sizes were grouted with microfine cement at three different water-to-cement ratios (W/C=1, 1.5, and 2), after which unconfined compression tests and bender element tests were performed according to curing time. The results of this study demonstrate that the hyperbolic model can effectively capture the time-dependent variations of both qucs and Gmax of the tested grouted sands. Investigation of the hyperbolic coefficient k of the tested materials reveals that the sand particle size and W/C affect the required curing time for completion of the hydration process, and relatively constant Gmax values can be obtained at a relatively earlier curing time compared with qucs. Finally, the direct relationship between qucs and Gmax is investigated in this study.

Original languageEnglish
Article number06020001
JournalJournal of Geotechnical and Geoenvironmental Engineering
Issue number4
Publication statusPublished - 2020 Apr 1

Bibliographical note

Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2018R1A2B6000973).

Publisher Copyright:
© 2020 American Society of Civil Engineers.


  • Hyperbolic model
  • Maximum shear modulus
  • Microfine cement
  • Time dependency
  • Unconfined compressive strength

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • General Environmental Science


Dive into the research topics of 'Time-Dependent Variations of Compressive Strength and Small-Strain Stiffness of Sands Grouted with Microfine Cement'. Together they form a unique fingerprint.

Cite this