Time-resolved spectroscopy of thioflavin T solutions: Asynchronous optical sampling method with two frequency-upconverted mode-locked lasers

Noh Soo Han, Jun Woo Kim, Tai Hyun Yoon, Minhaeng Cho

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

We carried out transient absorption spectroscopy of thioflavin T (ThT) molecules in various solvents employing an asynchronous optical sampling (ASOPS) scheme with dual synchronized and frequency up-converted mode-lock lasers in the near UV (NUV) spectral region. We developed a pair of synchronized femtosecond lasers with tunable center wavelengths ranging from 380 to 430 nm and spectral bandwidths of 30 nm. As a proof-of-principle experiment, we measured interferometrically detected time and frequency-resolved pump-probe signals of ThT in various solvents to study the twisted intramolecular charge transfer process of photo-excited ThT molecules. Both single-color NUV-NUV and two-color NUV-near IR (NIR) pump-probe measurements reveal that the vibronic coupling strengths of two vibrational modes with frequencies of 214 and 526 cm−1 in the excited state of ThT are reduced when ThT is dissolved in a chlorine-containing solvent, e.g., chloroform. We confirm theoretically that these vibrational modes have relatively high electric dipole moments in the excited state. As a result, the intramolecular charge transfer process of ThT in chloroform, which is driven by the solvation process of surrounding polar solvent molecules, could occur less efficiently, which results in an increase in the fluorescence quantum yield. Here, we demonstrate that the NUV-NUV and NUV-NIR ASOPS-transient absorption could be useful techniques for studying ultrafast photochemical reactions in condensed phases.

Original languageEnglish
Article number064201
JournalJournal of Chemical Physics
Volume156
Issue number6
DOIs
Publication statusPublished - 2022 Feb 14

Bibliographical note

Funding Information:
This work was supported by the Institute for Basic Science (IBS) in Korea (Grant No. IBS-R023-D1) and, in part, by Grant No. NRF-2019R1A2C2009974 (T.H.Y.).

Publisher Copyright:
© 2022 Author(s).

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Time-resolved spectroscopy of thioflavin T solutions: Asynchronous optical sampling method with two frequency-upconverted mode-locked lasers'. Together they form a unique fingerprint.

Cite this