Abstract
We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon polarons, are analytically shown to be topologically nontrivial, possessing finite Chern numbers. We also show that the Chern numbers of magnon-polaron bands and the number of band-crossing lines can be manipulated by an effective magnetic field. For experiments, we propose to use the thermal Hall conductivity as a probe of the finite Berry curvatures of magnon-polarons. Our results show that a simple ferromagnet on a square lattice supports topologically nontrivial magnon polarons, generalizing topological excitations in conventional magnetic systems.
Original language | English |
---|---|
Article number | 237207 |
Journal | Physical review letters |
Volume | 123 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2019 Dec 5 |
Bibliographical note
Funding Information:K.-J.L. acknowledges support by the National Research Foundation (NRF) of Korea (NRF-2017R1A2B2006119). G.G. acknowledges a support by the NRF of Korea (NRF-2019R1I1A1A01063594). S.K.K. was supported by the startup fund at the University of Missouri.
Publisher Copyright:
© 2019 American Physical Society.
ASJC Scopus subject areas
- Physics and Astronomy(all)