Towards Robust and Generalized Parameter-Efficient Fine-Tuning for Noisy Label Learning

Yeachan Kim, Junho Kim, Sang Keun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Parameter-efficient fine-tuning (PEFT) has enabled the efficient optimization of cumbersome language models in real-world settings. However, as datasets in such environments often contain noisy labels that adversely affect performance, PEFT methods are inevitably exposed to noisy labels. Despite this challenge, the adaptability of PEFT to noisy environments remains underexplored. To bridge this gap, we investigate various PEFT methods under noisy labels. Interestingly, our findings reveal that PEFT has difficulty in memorizing noisy labels due to its inherently limited capacity, resulting in robustness. However, we also find that such limited capacity simultaneously makes PEFT more vulnerable to interference of noisy labels, impeding the learning of clean samples. To address this issue, we propose Clean Routing (CleaR), a novel routing-based PEFT approach that adaptively activates PEFT modules. In CleaR, PEFT modules are preferentially exposed to clean data while bypassing the noisy ones, thereby minimizing the noisy influence. To verify the efficacy of CleaR, we perform extensive experiments on diverse configurations of noisy labels. The results convincingly demonstrate that CleaR leads to substantially improved performance in noisy environments.

Original languageEnglish
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages5922-5936
Number of pages15
ISBN (Electronic)9798891760943
Publication statusPublished - 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: 2024 Aug 112024 Aug 16

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period24/8/1124/8/16

Bibliographical note

Publisher Copyright:
© 2024 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Towards Robust and Generalized Parameter-Efficient Fine-Tuning for Noisy Label Learning'. Together they form a unique fingerprint.

Cite this