Toxic response of graphene nanoplatelets in vivo and in vitro

Eun Jung Park, Gwang Hee Lee, Beom Seok Han, Byoung Seok Lee, Somin Lee, Myung Haing Cho, Jae Ho Kim, Dong Wan Kim

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

With the development of nanotechnology, myriad types of novel materials have been discovered at the nanoscale, among which the most interesting material is graphene. However, the toxicity data available on graphene are extremely limited. In this study, we explored toxic response of commercially available graphene nanoplatelets (GNPs) in vivo and in vitro. The GNPs used in this study had a high surface area and feature considerably few defects. In mice, GNPs (2.5 and 5 mg/kg) remained in the lung until 28 days after a single instillation, and the secretion of inflammatory cytokines reached the maximal level at Day 14 and then decreased over time. In vitro study using BEAS-2B cells, a human bronchial epithelial cell line, GNPs located within autophagosome-like vacuoles 24 h after exposure. The GNPs (2.5, 5, 10, and 20 μg/mL) also dose-dependently reduced cell viability, which was accompanied by an increase in the portion of cells in the subG1 and S phases. Moreover, the GNPs down-regulated the generation of reactive oxygen species, suppressed ATP production, caused mitochondria damage, and elevated the levels of autophagy-related proteins. Based on these results, we suggest that GNPs provoked a subchronic inflammatory response in mice and that GNPs induced autophagy accompanying apoptosis via mitochondria damage in vitro.

Original languageEnglish
Pages (from-to)1557-1568
Number of pages12
JournalArchives of Toxicology
Volume89
Issue number9
DOIs
Publication statusPublished - 2015 Oct 1

Keywords

  • Autophagy
  • Graphene
  • Mitochondria
  • Nanoplatelets
  • Toxicity

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Toxic response of graphene nanoplatelets in vivo and in vitro'. Together they form a unique fingerprint.

Cite this