Abstract
The operation stability of polymer solar cells (PSCs) is one of the most important prerequisites for their practical use. In this work, we report a new acceptor-donor-acceptor (A-D-A) triad-type small molecule, 5TRh-PCBM, as a compatibilizer for enhancing the thermal stabilities and mechanical properties of efficient PSCs while increasing their power conversion efficiencies (PCEs). This multifunctional 5TRh-PCBM molecule, consisting of an oligothiophene segment as the central core and fullerene derivatives as the end groups, is designed to enable strong interactions between the 5TRh-core with various types of efficient polymer donors containing thiophene or fused-thiophene units, while the end fullerene groups preferentially interact with PCBM acceptors. To examine the effectiveness of this molecular compatibilizer, PSCs with different donors (PTB7-Th, PBDB-T, and P3HT) have been fabricated and tested, with addition of various amounts of 5TRh-PCBM. The addition of 5 and 10 wt% of 5TRh-PCBM significantly enhances the thermal and mechanical stabilities of all tested PSCs. Importantly, unlike typical compatibilizers, the addition of 5TRh-PCBM can increase the PCEs of the PSCs due to its light harvesting capability. In particular, the PCE of PTB7-Th:PCBM-based PSCs is increased from 9.37% to 10.09% with the 5 wt% addition of 5TRh-PCBM. Our comprehensive investigations have revealed the effects of 5TRh-PCBM on the optical, morphological, photovoltaic, and mechanical properties of molecularly engineered PSCs.
Original language | English |
---|---|
Pages (from-to) | 13522-13531 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 8 |
Issue number | 27 |
DOIs | |
Publication status | Published - 2020 Jul 21 |
Bibliographical note
Publisher Copyright:© 2020 The Royal Society of Chemistry.
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science