Abstract
Brain functional connectivity (FC) derived from resting-state functional MRI (rs-fMRI) data has become a powerful approach to measure and map brain activity. Using fMRI data, graph convolutional network (GCN) has recently shown its superiority in learning discriminative representations of brain FC networks. However, existing studies typically utilize one specific template to partition the brain into multiple regions-of-interest (ROIs) for constructing FCs, which may limit the analysis to a single spatial scale (i.e., a fixed graph) determined by the template. Also, previous methods usually ignore the underlying high-order (e.g., triplet) association among subjects. To this end, we propose a multi-scale triplet graph convolutional network (MTGCN) for brain functional connectivity analysis with rs-fMRI data. Specifically, we first employ multi-scale templates for coarse-to-fine ROI parcellation to construct multi-scale FCs for each subject. We then develop a triplet GCN (TGCN) model to learn multi-scale graph representations of brain FC networks, followed by a weighted fusion scheme for classification. Experimental results on 1,218 subjects suggest the efficacy or our method.
Original language | English |
---|---|
Title of host publication | Graph Learning in Medical Imaging - 1st International Workshop, GLMI 2019, held in Conjunction with MICCAI 2019, Proceedings |
Editors | Daoqiang Zhang, Luping Zhou, Biao Jie, Mingxia Liu |
Publisher | Springer |
Pages | 70-78 |
Number of pages | 9 |
ISBN (Print) | 9783030358167 |
DOIs | |
Publication status | Published - 2019 |
Event | 1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China Duration: 2019 Oct 17 → 2019 Oct 17 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11849 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 1st International Workshop on Graph Learning in Medical Imaging, GLMI 2019 held in conjunction with the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 |
---|---|
Country/Territory | China |
City | Shenzhen |
Period | 19/10/17 → 19/10/17 |
Bibliographical note
Publisher Copyright:© 2019, Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science