Tunable current duration in triboelectric generators via capacitive air gaps

Byungseok Seo, Youngsun Cha, Sangtae Kim, Wonjoon Choi

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Despite the low cost, high power, and wide application areas, impact-type triboelectric generators exhibit limited applicability due to the extremely short current duration, on the order of a millisecond. The high power, short lasting current peak not only results in reduced time-averaged power output but also acts as triboelectric shock to the accompanying circuits, quickly degrading the usability of the generator. Here, we demonstrate tunable triboelectric current duration via controlling the air gap capacitance inserted between the two dielectric plates. In typical contact-type triboelectric generator with nylon/air gap/Polydimethylsiloxane (PDMS) multilayers, decreasing the vertical speed of the dielectric plates from 0.5 cm/s to 0.05 cm/s result in increased current duration from 0.10 second to 0.81 second. The increased peak duration accompanies decreased peak current, resulting in the optimal charge density of 0.163 nC/cm2 at the vertical speed of 0.25 cm/s. Changing the air gap capacitance in noncontact mode or the relative permittivity in dielectric layers also results in similar change in peak duration. To explain the tunable current duration, an equivalent circuit model is constructed via serially connected capacitors and numerical solutions reproduce the trends in current duration associated with change in air gap capacitance. This study provides significant implications toward further optimizing triboelectric generators, in terms of optimal triboelectric charge density, accompanying circuit lifetime and broadened applicability.

    Original languageEnglish
    Pages (from-to)5619-5628
    Number of pages10
    JournalInternational Journal of Energy Research
    Volume45
    Issue number4
    DOIs
    Publication statusPublished - 2021 Mar 25

    Bibliographical note

    Publisher Copyright:
    © 2020 John Wiley & Sons Ltd

    Keywords

    • air gap capacitance
    • current duration
    • nanogenerator
    • time-averaged energy efficiency
    • triboelectricity

    ASJC Scopus subject areas

    • Renewable Energy, Sustainability and the Environment
    • Nuclear Energy and Engineering
    • Fuel Technology
    • Energy Engineering and Power Technology

    Fingerprint

    Dive into the research topics of 'Tunable current duration in triboelectric generators via capacitive air gaps'. Together they form a unique fingerprint.

    Cite this