Abstract
In this paper, we propose a new state estimator called the two-layer nonlinear finite impulse response (TLNF) filter and adopt this new filter and unscented Kalman filter (UKF) as subfilters to create the fusion TLNF/UK filter. The TLNF filter is constructed with measurements that are redefined by weighting the estimated states acquired through minimizing the cost function based on the Frobenius norm. The efficient iterative form of the TLNF filter is also developed in this paper. Using the fact that the UKF and the TLNF filter each takes a different type of memory structure, the fusion TLNF/UK filter is designed as a robust nonlinear state estimator taking both advantages of each filter. To obtain the best fusion estimates, probabilistic weights are computed based on Bayes' rule and the likelihood of each filter. Both simulation and experimental results for mobile robot indoor localization have shown that the fusion TLNF/UK filter achieves a higher level of accuracy and robustness under practical situations.
Original language | English |
---|---|
Article number | 9086455 |
Pages (from-to) | 87173-87183 |
Number of pages | 11 |
Journal | IEEE Access |
Volume | 8 |
DOIs | |
Publication status | Published - 2020 |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation (NRF) of Korea Grant funded by the Korea Government (Ministry of Science and ICT) under Grant NRF-2020R1A2C1005449, and in part by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea under Grant 20174030201820.
Publisher Copyright:
© 2013 IEEE.
Keywords
- State estimation
- finite impulse response (FIR) filter
- fusion algorithm
- unscented Kalman filter (UKF)
ASJC Scopus subject areas
- General Computer Science
- General Materials Science
- General Engineering
- Electrical and Electronic Engineering